λ³Έλ¬Έ λ°”λ‘œκ°€κΈ°

Python/Machine learning7

[λ¨Έμ‹ λŸ¬λ‹] μˆ˜μΉ˜λ―ΈλΆ„(λ―ΈλΆ„, νŽΈλ―ΈλΆ„ κ°œλ… ν•™μŠ΅) [ν•™μŠ΅ 자료] [λ¨Έμ‹ λŸ¬λ‹ κ°•μ˜ 09] λ¨Έμ‹ λŸ¬λ‹ μˆ˜μΉ˜λ―ΈλΆ„ (I) https://www.youtube.com/watch?v=PnQe3-6812k&list=PLS8gIc2q83OjStGjdTF2LZtc0vefCAbnX&index=9&ab_channel=NeoWizard λ―ΈλΆ„κ³Ό νŽΈλ―ΈλΆ„ λ¨Έμ‹ λŸ¬λ‹μ—μ„œ μ‚¬μš©λ˜λŠ” 1μ°¨ν•¨μˆ˜μ˜ κΈ°μšΈκΈ°μ™€ yμ ˆνŽΈμ„ κ³„μ‚°ν•˜κ³ , μ΅œμ ν™”ν•˜κΈ° μœ„ν•΄ λ°˜λ“œμ‹œ ν•„μš”ν•œ κ°œλ… νŽΈλ―ΈλΆ„(Partial derivative) μž…λ ₯λ³€μˆ˜κ°€ ν•˜λ‚˜ 이상인 λ‹€λ³€μˆ˜ ν•¨μˆ˜μ—μ„œ, λ―ΈλΆ„ν•˜κ³ μž ν•˜λŠ” λ³€μˆ˜ ν•˜λ‚˜λ₯Ό μ œμ™Έν•œ λ‚˜λ¨Έμ§€ λ³€μˆ˜λ“€μ€ μƒμˆ˜λ‘œ μ·¨κΈ‰ν•˜κ³ , ν•΄λ‹Ή λ³€μˆ˜λ₯Ό λ―ΈλΆ„ν•˜λŠ” 것 πŸ€”μ˜ˆμ‹œ) 체쀑 ν•¨μˆ˜λ₯Ό '체쀑(야식, μš΄λ™)'처럼 야식과 μš΄λ™μ— 영ν–₯을 λ°›λŠ” 2λ³€μˆ˜ ν•¨μˆ˜λΌκ³  κ°€μ •ν•˜μž. νŽΈλ―ΈλΆ„μ„ ν™œμš©ν•˜λ©΄ 야식, μš΄λ™ λ³€μˆ˜μ˜ 변화에 λ”°λ₯Έ 체쀑 .. 2022. 3. 4.
[λ¨Έμ‹ λŸ¬λ‹] μ§€λ„ν•™μŠ΅(Supervised)κ³Ό λΉ„μ§€λ„ν•™μŠ΅(Unsupervised) [ν•™μŠ΅ 자료] [λ¨Έμ‹ λŸ¬λ‹ κ°•μ˜ 12] λ¨Έμ‹ λŸ¬λ‹ μ§€λ„ν•™μŠ΅ λΉ„μ§€λ„ν•™μŠ΅ κ°œμš” https://www.youtube.com/watch?v=KDrys0OnVho&list=PLS8gIc2q83OjStGjdTF2LZtc0vefCAbnX&index=12&ab_channel=NeoWizard λ¨Έμ‹ λŸ¬λ‹μ€ μ§€λ„ν•™μŠ΅κ³Ό λΉ„μ§€λ„ν•™μŠ΅μœΌλ‘œ κ΅¬λΆ„λœλ‹€. 지도 ν•™μŠ΅(Supervised) μ§€λ„ν•™μŠ΅μ€ μž…λ ₯ κ°’κ³Ό 정닡을 ν¬ν•¨ν•˜λŠ” training dataλ₯Ό μ΄μš©ν•΄ ν•™μŠ΅ν•œλ‹€. ν•™μŠ΅λœ κ²°κ³Όλ₯Ό λ°”νƒ•μœΌλ‘œ λ―Έμ§€μ˜ 데이터에 λŒ€ν•œ 값을 μ˜ˆμΈ‘ν•œλ‹€. μ΄λŸ¬ν•œ μ§€λ„ν•™μŠ΅μ€ λ‹€μ‹œ 'νšŒκ·€'와 'λΆ„λ₯˜'둜 λ‚˜λ‰œλ‹€. νšŒκ·€ | training dataλ₯Ό μ΄μš©ν•˜μ—¬ 연속적인 값을 예츑 λΆ„λ₯˜ | training dataλ₯Ό μ΄μš©ν•˜μ—¬ μ£Όμ–΄μ§„ μž…λ ₯값이 μ–΄λ–€ μ’…λ₯˜μ˜ 값인지 ꡬ별 νšŒκ·€μ˜ μ˜ˆμ‹œ.. 2022. 3. 4.
[λ¨Έμ‹ λŸ¬λ‹] NumPy - concatenate, loadtxt, λ§·ν”Œλ‘―λ¦½(matplotlib) [ν•™μŠ΅ 자료] [λ¨Έμ‹ λŸ¬λ‹ κ°•μ˜ 08] 파이썬(Python) Numpy (III) https://www.youtube.com/watch?v=8nX9C8EjYkw&list=PLS8gIc2q83OjStGjdTF2LZtc0vefCAbnX&index=8&ab_channel=NeoWizard CONCATENATE λ¨Έμ‹ λŸ¬λ‹μ˜ νšŒκ·€ μ½”λ“œ κ΅¬ν˜„μ‹œ ν•„μš”ν•œ concatenate에 λŒ€ν•΄ λ°°μ›Œλ³΄μ•˜λ‹€. concatenateλŠ” κΈ°μ‘΄ 행렬에 ν–‰κ³Ό 열을 μΆ”κ°€ν•΄μ£ΌλŠ” κΈ°λŠ₯을 ν•œλ‹€. 10 20 30 40 50 60 인 행렬에 (70 80 90)의 행을 μΆ”κ°€ν•˜μ—¬, 10 20 30 40 50 60 70 80 90 을 λ§Œλ“€κ³  싢을 λ•Œ concatenateλ₯Ό μ‚¬μš©ν•  수 μžˆλ‹€. #concatenate import numpy as np A = np... 2022. 3. 4.
[λ¨Έμ‹ λŸ¬λ‹] NumPy - ν–‰λ ¬ κ³±, μ „μΉ˜ν–‰λ ¬, indexing, slicing, iterator [ν•™μŠ΅ 자료] [λ¨Έμ‹ λŸ¬λ‹ κ°•μ˜ 07] 파이썬(Python) Numpy (II) https://www.youtube.com/watch?v=dnJ3JESmBkE&list=PLS8gIc2q83OjStGjdTF2LZtc0vefCAbnX&index=7&ab_channel=NeoWizard ν–‰λ ¬ μ›μ†Œ μ ‘κ·Ό 방법 II : iterator #iterator import numpy as np A = np.array([[10,20,30,40], [50,60,70,80]]) print(A, "\n") print("A.shape ==", A.shape, "\n") #ν–‰λ ¬ A의 iterator 생성 it = np.nditer(A, flags = ['multi_index'], op_flags = ['readwrite']) whi.. 2022. 3. 3.
[λ¨Έμ‹ λŸ¬λ‹] 파이썬 λ„˜νŒŒμ΄(NumPy) 라이브러리 [ν•™μŠ΅ 자료] [λ¨Έμ‹ λŸ¬λ‹ κ°•μ˜ 06] 파이썬(Python) Numpy (I) https://www.youtube.com/watch?v=ku9-AxaznSA&list=PLS8gIc2q83OjStGjdTF2LZtc0vefCAbnX&index=6&ab_channel=NeoWizard NumPy ν–‰λ ¬μ΄λ‚˜ λŒ€κ·œλͺ¨ 닀차원 배열을 μ‰½κ²Œ 처리 ν•  수 μžˆλ„λ‘ μ§€μ›ν•˜λŠ” 파이썬의 라이브러리 λ„˜νŒŒμ΄ 라이브러리둜 ν–‰λ ¬ 연산이 κ°€λŠ₯ν•˜λ‹€. 이 λ•Œ vector, matrix의 ν˜•μƒκ³Ό 차원을 ν™•μΈν•˜λŠ” 것이 ν•„μˆ˜ A ν–‰λ ¬κ³Ό B 행렬을 μƒμ„±ν•˜κ³ , μ΄λ“€μ˜ ν˜•μƒκ³Ό 차원을 ν™•μΈν•˜κ³  싢을 λ•Œ, 이λ₯Ό 파이썬 μ½”λ“œλ‘œ μ–΄λ–»κ²Œ κ΅¬ν˜„ν• κΉŒ? A = 1 2 3 B = -1 -2 -3 4 5 6 -4 -5 -6 import numpy as np A = np... 2022. 3. 3.
[λ¨Έμ‹ λŸ¬λ‹] 파이썬 λžŒλ‹€(lambda) ν•¨μˆ˜ [ν•™μŠ΅ 자료] [λ¨Έμ‹ λŸ¬λ‹ κ°•μ˜ 04] 파이썬(Python) ν•¨μˆ˜ λžŒλ‹€ https://www.youtube.com/watch?v=oL6LIuw_p94&list=PLS8gIc2q83OjStGjdTF2LZtc0vefCAbnX&index=4&ab_channel=NeoWizard Anonymous Functions라고 λΆˆλ¦¬μš°λŠ” 'λžŒλ‹€ ν•¨μˆ˜'λŠ” ν•¨μˆ˜λ₯Ό ν•œ 쀄에 μž‘μ„±ν•˜λŠ” 방법이며, 수치 λ―ΈλΆ„κ³Ό ν™œμ„±ν™” ν•¨μˆ˜μ— μ‚¬μš©λœλ‹€. πŸ€”μ‚¬μš©λ°©λ²•πŸ€” ν•¨μˆ˜λͺ… = lambda μž…λ ₯1, μž…λ ₯2, ... : λŒ€μ²΄λ˜λŠ” ν‘œν˜„μ‹ #lambda ν•¨μˆ˜ f = lambda x : x+100 for i in range(3): print(f(i))​ OUTPUT >> 100 101 102 #lambda ν•¨μˆ˜ def print_hello(): print("h.. 2022. 3. 3.